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A B S T R A C T

Background: Mechanical ventilation is known to induce and 
aggravate lung injury. One of the underlying mechanisms 
is biotrauma, an inflammatory response in which cytokines 
play a crucial role. 
Objective: To review the literature on the role of cytokines 
in ventilator-induced lung injury (VILI) and multiple 
organ dysfunction syndrome (MODS). 
Material and methods: 57 English written, peer-reviewed 
articles on cytokines in in-vitro settings (n=5), ex-vivo 
models (n=9) in-vivo models (n=19) and clinical trials (n=24). 
Results: Mechanical ventilation (MV) can induce 
cytokine upregulation in both healthy and injured lungs. 
The underlying mechanisms include alveolar cellular 
responses to stretch with subsequent decompartimental-
isation due to concomitant cellular barrier damage. The 
cytokines involved are interleukin (IL)-8 and CXC chemo-
kines, and probably IL-6, IL-1, and tumour necrosis 
factor (TNF)-. Cytokines are important for signalling 
between inflammatory cells and recruiting leucocytes to 
the lung. There is strong circumstantial evidence that the 
release of cytokines into the systemic circulation contributes 
to the pathogenesis of MODS. Multiple studies demonstrate 
the relation between elevated proinflammatory cytokine 
concentrations and mortality. 
Conclusion: Cytokines are likely to play a role in the various 
interrelated processes that lead to VILI and other MV-related 
complications, such as MODS and possibly ventilator-
associated pneumonia. Cytokines are good surrogate end-
points in exploring the pathogenesis and pathophysiology 
of VILI in both experimental and clinical studies.
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I N T R O D U C T I O N

Mechanical ventilation (MV) is one of the cornerstones 
of ICU treatment. Despite its lifesaving effects, MV may 
lead to serious damage in both previously healthy and 
diseased lungs, a process called ventilator-induced lung 
injury (VILI; figure 1). In 1974, Webb en Tiernay demon-
strated that MV with high peak airway pressures resulted 
in lung oedema, alveolar disruption, capillary leakage and 
death.1 Further studies revealed that the end-inspiratory 
volume and not the end-inspiratory pressure was the 
main determinant (volutrauma). Subsequent studies 
showed that cyclic opening and collapse of alveoli, even 
at low inspiratory pressures and low inspiratory volume, 
increases stretch and shear forces resulting in lung injury 
and surfactant dysfunction.2,3 This atelectrauma could 
be attenuated by increasing positive end-expiratory pres-
sure (PEEP) and outweighed the concomitant increase in 
inspiratory pressure.1,4 Recent studies have shown that 
MV upregulates pulmonary cytokine production, which 
may result in an inflammatory reaction aggravating lung 
injury (biotrauma). This inflammatory reaction is not 
confined to the lungs but also involves the systemic cir-
culation and has its effects on distal end-organs, which 
offers an explanation for the observation that most adult 
respiratory distress syndrome (ARDS) patients do not die 
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from respiratory failure but from multiple organ dysfunction 
syndrome (MODS).5

In this review we will discuss the role of cytokines in VILI 
and relate these findings to the clinical setting.

Inflammatory response to mechanical ventilation
Pulmonary injury and inflammation is a complex process  
in which cytokines play an important role. Cytokines 
are low-molecular-weight soluble proteins that transmit 
signals between the cells involved in the inflammatory 
response.6 They are produced by bronchial, bronchi-
olar and alveolar epithelial cells7 but also by alveolar 
macrophages and neutrophils.8 The balance between 
the proinflammatory cytokines tumour necrosis factor 
(TNF)-, interleukin (IL)-1, IL-6, IL-8 and anti-inflamma-
tory cytokines such as IL-10 is essential for directing the 
immune response.9 Some of the cytokines have natural 
antagonists, for example IL-1ra which makes an interpre-
tation of the net effect cumbersome.10,11 TNF- and IL-1 
induce NF-B activation, a critical step in the transcription 
of genes necessary to perpetuate the innate immune 
response that ultimately results in activation and extrava-
sation of polymorphonuclear leucocytes (PMNs) and 
other immune active cells, a process that starts within 
minutes after commencing mechanical ventilation.12 
Leucocytes are predominantly activated and attracted to 
the lungs by CXC chemokines and IL-8.13 However, alveolar 
recruitment of PMNs by instilling a chemoattractant 
(LTB4) does not result in lung injury,14 indicating that 
other factors, possibly cytokines, are necessary to activate 
them. This activation and attraction of leucocytes is a very 
important feature in biotrauma. Experimental studies 
using PMN-depleted animals demonstrate a significantly 

reduced degree of VILI.15 Also, leucocyte apoptosis appears 
to be delayed in adult acute lung injury (ALI) and neonatal 
chronic lung disease (CLD).16,17 contrary to pulmonary 
epithelial cells18,19 and other end-organs that exhibit 
increased apoptosis.20 Incubation of normal PMNs in 
bronchoalveolar lavage (BAL) fluid derived from ARDS 
patients results in delayed apoptosis compared with those 
incubated in normal BAL fluid.21 Inhibition of neutrophil 
apoptosis seems mediated by soluble factors, such as 
the proinflammatory cytokines, possibly IL-8 and IL-2,22 
granulocyte colony-stimulating factor and granulocyte/
macrophage colony-stimulating factor (GM-CSF), and 
levels of soluble Fas-ligand appear to be higher in BAL 
fluid derived from ARDS nonsurvivors than in that of 
survivors.21 Similarly, Fas, Fas-ligand and Caspase-3 are 
more prevalent in alveolar walls of patients succumbing 
to ARDS than in those who died without this diagnosis, 
and soluble recombinant human Fas ligand infusion in 
the experimental setting results in increased alveolar 
apoptosis and injury.23

Another important pathophysiological relation in VILI 
is that between cytokines and surfactant. Surfactant dys-
function or deficiency is one of the prominent features of 
lung injury. Inflammation and more specifically cytokines 
such as TNF- and IL-1 are thought to decrease surfactant 
components either directly24 or indirectly by inducing 
alveolar leakage of proteins that subsequently inhibit 
surfactant function.25

There are several mechanisms by which mediator release 
may occur during mechanical ventilation: alterations in 
cytoskeletal structure without ultrastructural damage 
(mechanotransduction); stress failure of the alveolar barrier 
(decompartimentalisation), stress failure of the plasma 
membrane (necrosis), and effects on the vasculature 
independent of stretch or rupture.

Mechanotransduction
One of the most intriguing mechanisms of ventilation-
induced cytokine release is mechanotransduction. Trans-
membrane receptors such as integrins, stretch-activated 
ion channels and the cytoskeleton itself are identified as 
the key structures in mechanosensing that start various 
intracellular processes.26,27 Mechanotransduction, the 
stimulation of gene transcription following mechanosens-
ing, is most likely signalled by mitogen-activated protein 
kinase (MAPK).28,29 Most alveolar cells are capable of 
producing pro- and anti-inflammatory mediators such as 
TNF-, IL-1, IL-6, IL-8, and IL-108,28,30-34 when stretched 
in vitro8,32,33,35 or when ventilated with a large tidal volume 
(Vt) in ex-vivo and in-vivo experiments (tables 1 and 3). 
In premature neonates, cytokine production appears to 
be related to gestational age, with a delayed maturation 
of the anti-inflammatory response.36 Injurious MV also 
induces upregulation of genes responsible for c-fos which 

Figure 1 Presumed mechanism in mechanical ventilation

VILI = ventilator-induced lung injury; SIRS = systemic inflam-
matory response syndrome; MODS = multiple organ dysfunction 
syndrome.
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in turn activates transcription for cytokine synthesis,35 
cyclo-oxygenase production and intercellular adhesion 
molecule (ICAM)-1 expression.35

NF-B, a DNA-binding protein, plays a central role as a 
common messenger in cytokine regulation and inflam-
mation. In experimental models, blockage of NF-B 
decreases VILI.8,37-40 However, its exact role in mechano-
transduction is not completely clear yet.27 

Translocation and decompartimentalisation
Besides mechanotransduction, direct trauma to the plasma 
membrane of alveolar cells and loss of cell integrity leads 
to the release of intracellular cytokines to the interstitium 
and decompartimentalisation into both the alveolar space 
and the systemic circulation.41 Experiments by Haitsma et al.  
have demonstrated that in healthy animals ventilated 
without positive end-expiratory pressure (PEEP), endotra-
cheal instillation of lipopolysaccharide (LPS) to induce 
local TNF- production results in elevated serum con-
centrations of TNF-, and conversely intraperitoneal LPS 
injection resulted in TNF- in BAL fluid.42

Cytokines in VILI
Experimental studies
Experimental studies consist of both in-vitro, ex-vivo and 
in-vivo models, using different species and applying vari-
ous techniques, which probably explains some of the 
observed inconsistencies in cytokine response (tables 1 

to 3).43 In almost all studies, cyclic overstretch increases 
alveolar levels of IL-8 or its rodent equivalent macrophage 
inflammatory protein (MIP)-2. MIP-2 is the most potent 
leucocyte chemoattractant and its role in the pathogenesis 
of VILI is very important. Neutrophil depletion attenuates 

the increase of IL-8 in the lungs and results in less severe 
VILI.15,38 Activation of neutrophils in VILI occurs primarily 
in the alveolar space after migration. Subsequent lung 
damage is partly mediated by the interaction of the CXC 
chemokine receptor 2 ligand in lung tissue with its recep-
tor on neutrophils.44 Other proinflammatory cytokines 
such as IL-1 and IL-6 are elevated in most but not all 
studies. Recombinant IL-1 receptor antagonist attenuates 
neutrophil recruitment in a lung lavage model.45 The 
involvement of another potent proinflammatory cytokine 
TNF- in the pathogenesis of VILI is still under debate. 
Increased TNF- levels after MV were found in most but 
not all uninjured lung models, surfactant depletion and 
ALI models, and sepsis models (tables 2 and 3). Endotracheal 
instillation of anti-TNF- antibody attenuates VILI in both 
the previously uninjured and injured lung, suggesting 
a role for TNF-.46,47 However, lack of TNF- signalling 
(TNF- receptor -/- mice) does not show diminished 
VILI.46 In general, most of the reviewed studies show a 
more pronounced increase in cytokine levels with larger 
tidal volumes or absent PEEP or when animals are con-
comitantly subjected to other injurious strategies such 
as hyperoxia.48 The observed proinflammatory response 
usually parallels the observed histopathology. The injured 
lung appears to be far more susceptible for VILI than the 
healthy lung (two-hit model). 

Human studies (table 4)
Both short-term and long-term clinical studies have shown 
that ventilator settings influence pulmonary cytokine 
levels. Plotz et al. demonstrated that two hours of lung-
protective MV (Vt 10 ml/kg, 4 cm H2O PEEP, FiO2 0.4) 
in healthy infants anaesthetised for cardiac catheterisation 

Halbertsma, et al. Cytokines and biotrauma in ventilator-induced lung injury.

Table 1 Experimental in-vitro studies 

Author, reference Study subject Study design Studied variables Results
Pugin8 Human alveolar 

macrophages
A: Static

B: Cyclic stretch

C: LPS static

D: LPS + cyclic stretch

TNF-, IL-6, IL-8, 
NF-B activation

IL-8: A < C < B < D

TNF-, IL6: A/B = 0,  
C < D

Dexamethasone blocks 
increase of TNF-, NF-B

Vlahakis33 Alveolar epithelium A: Cyclic stretch

B: Static stretch

IL-8 A > B

Blahnik36 Neonatal lung  
macrophages

LPS stimulation of lung 
macrophages:

A: preterm

B: term

TNF-, IL-10 TNF-: A = B

IL-10: A < B

Li85 Neonatal lung  
macrophages

rIL-10/dexamethasone 
administration

IL-6, TNF- Decrease

Mourgeon32 Foetal rat lung cells Stretch 0-5%

± LPS

MIP-2 Increase with higher 
stretch levels especially 
after LPS

Grembowicz35 Endothelium Stretch c-fos, NF-B Increase after plasma 
membrane disruption
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resulted in elevated alveolar IL-6 levels.49 Stuber et al. 
showed that increasing Vt from 6 to 12 ml/kg in ARDS 
patients increases cytokine levels in both BAL fluid and 
plasma within one hour.50,51 These findings are consistent 
with both the results of Ranieri et al. who found lower 
cytokine levels in BAL fluid of patients ventilated with 
low Vt52 and those of the ARDS network trial in 2000 
that found lower plasma IL-6 levels in the low Vt group.51 

In accordance with experimental data, previously injured 
lungs may be more susceptible for VILI. Wrigge et al. 
found elevated cytokine levels after elective surgery in 
patients with normal lungs, but there was no difference 
between patients ventilated with Vt 15 ml/kg and those 
with Vt 6 ml/kg.53,54

In longitudinal studies in both adults and neonates,55-59 
elevated proinflammatory cytokine levels are associated 
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Table 2 Experimental ex-vivo studies 

Author, reference Study subject Study design Studied variables Results
Tremblay31 Isolated rat lung, 

n=55
A: MV Vt 7/PEEP 3

B: MV Vt 15/PEEP 10

C: MV Vt 15/PEEP 0

D: MV Vt 40/PEEP 0

NaCl 0.9% vs LPS

TNF-, IL-, IFN-, 
IL-6/10, MIP-2, c-
fos mRNA in BAL

A < B < C < D

TNF-/MIP2/c fos:

LPS > NaCl 0.9%

Tremblay7 Isolated rat lung, 
n=24

A: MV Vt 7/PEEP 3

B: MV Vt 15/PEEP 10

C: MV Vt 15/PEEP 0

D: MV Vt 40/PEEP 0

NaCl vs LPS

TNF-, IL-6, 
mRNA, in lung, 
homogenate, BAL

C and D > A

Time-dependent response, 
peak at T = 30 min

Whitehead86 Isolated rat lung, 
n=70

A: MV Vt 7/PEEP 3

B: MV Vt 15/PEEP 3

C: MV Vt 15/PEEP 0

D: MV Vt 40/PEEP 0

NaCl vs LPS

TNF-, IL-,  
MIP-2, in BAL

NaCl: TNF-, IL-: A < D

LPS: TNF-, MIP-2 A > D

Chu87 Isolated rat lung, 
n=88

A: MV Vt 7 PEEP 5

B: MV Vt 7 PEEP 0

C: MV Vt 0 PEEP 0

D: MV PIP 50 PEEP 8

E: MV Vt 0 PEEP 50

F: MV Vt 0 PEEP 31

TNF-, IL-6,  
MIP-2, in BAL

TNF-: B > C = A;  
D = E > F

IL-6: B > C = A; D > F = E

MIP-2: B > C = A;  
D = E = F

Ricard88 Isolated rat lung, 
n=38

A: MV Vt 42

B: MV Vt 7

C: CPAP

± LPS

TNF-, IL-1,  
MIP-2, in serum 
and BAL

Before LPS:

Serum: A,B -

BAL:

MIP-2/IL-1: A > B = C

TNF-: -

After LPS:

Serum: TNF-, IL-1,  
MIP-2: increase B, C, D

BAL: TNF-, IL-1,  
MIP-2: B = C > D

Bethmann34 Isolated mouse 
lung, n=27

A: MV P 10

B: MV P 25

Positive or negative  
pressure MV

TNF-, IL-6, 
mRNA

A < B in both positive  
and negative pressure 
ventilation

Cheng89 Isolated mouse 
lung, n=nd

A: MV Vt 7 ZEEP 0

B: MV Vt 7 NEEP -7.5

C: MV Vt 7 NEEP –15

TNF-, MIP-1,  
lung dynamics

C > A/B

C < B/A

Bailey48 Isolated mouse 
lung, n=106

A: FiO2 0.21

B: FiO2 1.0

± MV Vt 20

TNF-, IL-6 in BAL TNF-: B + MV > B – MV

IL-6: B > A ± MV

Held40 Isolated mouse 
lung, n=31

A: MV Vt 9 P 10

B: MV Vt 32 P 25

C: LPS

MIP-2, MIP-1, 
NF-B in BAL and 
Serum

BAL/serum: B = C > A

Attenuation by dexa-
methasone
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Table 3 Experimental in-vivo studies

Author, reference Study subject Study design Studied variables Results
Wilson90 Mouse, n=29 A: MV Vt 9

B: MV Vt 35
TNF-, MIP-2 in 
BAL

A < B

Wilson46 Mouse, n=15 A: MV Vt 10

B: MV Vt 44

TNF receptor knock out

Anti-TNF e.t. wild mice

Anti-TNF i.v. wild mice

MIP-2 in BAL

Pulmonary PMN 
influx

Lung injury

A < B in all mice

PMN influx less in knock-
out and anti-TNF e.t. 
mice,

not in anti-TNF i.v. mice

Belperio44 Mouse, n=30 A: MV PIP 20

B: MV PIP 40

C57B6 vs CXCR2-/-

KC/CXCL1,

MIP-2/CXCL2/3

in lung tissue

A < B

Less in CXCR2-/- mice

Gurkan91 Rat, n=26 A: MV Vt 6

B: MV Vt 17

NaCl 0.9 vs HCL e.t.

Il-6, TNF-, VEGF 
in BAL

NaCl: A = B = 0

HCl: IL-6, VEGF: A < B

Chiumello64 Rat, n=40 A: MV Vt 16 PEEP 0

B: MV Vt 16 PEEP 5

C: MV Vt 9 PEEP 0

D: MV Vt 9 PEEP 5

E: MV Vt 9 PEEP 5 + RM

HCl e.t.

TNF-, MIP-2 in 
serum and BAL

BAL TNF-: A > D > B > E

Serum TNF: A > B = D = E

BAL MIP-2: A > B = D = E

Serum MIP: A > B > D = E

Caruso92 Rat, n=30 A: spontaneous ventilation

B: MV Vt 6

C: MV Vt 24

IL-1 mRNA in 
lung tissue

L infiltration

A < B = C

Copland93 Rat, n=nd MV Vt 25 PEEP 0 HSP-70, IL-1 in 
lung tissue

Increase after 90 min MV

Copland94 Rat, n=18 A: MV Vt 25

B: MV Vt 40

Adult vs neonatal rats

mRNA IL-1, IL-6, 
IL-10 TNF-, MIP-2 
in lung tissue

A/B: all parameters:

adult > neonatal

Imanaka95 Rat, n=23 A: MV PIP 45 PEEP 0

B: MV PIP 7 PEEP 0
TNF- mRNA, 
TGF1 mRNA

PMN ICAM

PaO2

No increase

A = B

A < B

B < A

Verbrugge96 Rat, n>100 Lung lavage model

A: MV + Surfactant

B: Partial liquid vent

C: MV PEEP 16

D: MV PEEP 8

E: MV PIP 32/6

TNF-, protein in 
BAL

TNF-: A = B = C = D = E

Protein: A = B = C < D = E

Quinn97 Rat, n=35 A: MV FiO2 0.21

B: MV FiO2 1.0

MIP-2, WBC in 
BAL

Lung weight

B > A

B > A

Bueno98 Rat, n=33 A: Vt 7

B: Vt 21

C: Vt 42

TNF- in plasma

PaO2, lung weight

C > A/B (ns)

PaO2: C < A/B

Lung weight: A/B < C

Haitsma99 Rat, n=85 A: MV P 13/3

B: MV P 32/6

C: MV P 32/0

IL-6, MIP-2

in BAL and serum

A/B/C: increase MIP-2 
in BAL

B/C: increase MIP-2 in 
serum

C: increase IL-6 in serum,

Haitsma41 Rat, n=85 A: MV P 45/0

B: MV P 45/10

LPS et/IP vs NaCl

TNF- in serum 
and BAL

A > B

LPS > NaCl

Lin76 Rat, n=50 A: MV Vt 7 PEEP 5 1h/day

B: MV Vt 21 PEEP 0 
1h/day

Bacterial installation e.t.

MIP-2, TNF-

Blood cultures

A > B

A < B positive

N O V E M B E R  2 0 0 5 ,  V O L .  6 3 ,  N O .  1 0

386



N O V E M B E R  2 0 0 5 ,  V O L .  6 3 ,  N O .  1 0

Halbertsma, et al. Cytokines and biotrauma in ventilator-induced lung injury.

Table 3 Continued

Author, reference Study subject Study design Studied variables Results
Herera100 Rat, n=125 A: MV Vt 6

B: MV Vt 20

PEEP vs ZEEP

IL-1, IL-6, TNF-

serum, mRNA in 
lung tissue

B ZEEP > A ZEEP > A 
PEEP

Takata101 Rabbits, n=13 MV P 28/5 TNF- mRNA in 
lung lavage cells

Increase

Imai47 Rabbits, n=25 A: MV Anti-TNF- e.t.

B: MV IgG e.t.

C: MV NaCl e.t.

WBC in BAL A < B = C

Narimanbekov45 Rabbits A: FiO2 0.21 low PIP

B: FiO2 1.0 high PIP

C: B + rIL-1 antagonist

WBC in BAL A, C < B

Table 4 Human studies

Author, reference Study subject Study design Studied variables Results
Ranieri52 ARDS, n=44 A: Vt 11 PEEP 6.5

B: Vt 7.5 PEEP 14.8
TNF-, IL-1, IL-6, 
IL-8, IL1-RA, in 
BAL/serum

Most variables A > B

Stuber50 ALI, n=12 A1: Vt 5 PEEP 15 (6H)

A2: Vt 12 PEEP 5 (6H)

A3: Vt 5 PEEP 15 (6H)

TNF-, IL-1, IL-6, 
IL-10, IL1-RA, in 
BAL/serum

Serum A1 = A3 < A2

BAL A1 < A2 < A3

Wrigge53 Elective surgery, 
n=39

A: Vt 15 PEEP 0

B: Vt 6 PEEP 0

C: Vt 6 PEEP 10

TNF-, IL-6, IL-10, 
IL1-RA

A = B = C

Wrigge54 Thoracotomy/

laparotomy, 
n=34/30

A: Vt 12-15 PEEP 0

B: Vt 6 PEEP 10
TNF-, IL-1, 6, 
10, 12

A = B = C

ARDS network51 ARDS, n=861 A: Vt 6

B: Vt 12

IL-6

Mortality

A < B

A < B

Meduri60 ARDS, n=27 A: survivors

B: nonsurvivors
TNF-, IL-1, IL-6, 
IL-8

A < B

Meduri102 Persistent ARDS, 
n=17

A: R/methylprednisolone

B: R/-
TNF-, IL-1, IL-6

IL-10 mRNA in 
cells primed with 
plasma

A < B

A > B

Headley73 ARDS, n=43 A: survivors

B: nonsurvivors
TNF-, IL-1, IL-6, 
IL-8

A < B

Douzinas63 Sepsis/ARDS, n=8 Mechanical ventilation TNF-, IL-6, Arterial > venous

Park9 ARDS, n=69 A: patients at risk for 
ARDS

B: patients developing 
ARDS

TNF-, TNF- R I 
& II, IL-1, IL1-RA, 
sol IL-1 r II, IL-6, 
sol IL-6 r, IL-8

Anti-inflammatory 
cytokines/ pro-inflamma-
tory cytokines

A > B, both > 1

Parsons70 ALI, n=861 A: Vt 6

B: Vt 12

IL-6, IL-8, IL-10 IL-6, IL-8 : A < B

Mortality and morbidity 
related with IL-6, IL-8

Parsons71 ALI, n=95 A: Vt 6

B: Vt 12

Sol TNF receptor I A < B

Plotz49 Infants, n=12 Vt 10 PEEP 4

Anaesthesia for cardiac 
catheterisation

TNF-, IL-6 Increased after 2 hours

Yoon103 Neonates, n=69 Intrauterine infection IL-6, CLD IL-6 related to CLD

Wang104 Neonates, n=34 Mechanical ventilation IL-16 in BAL Detectable

Associated with increased 
BAL L
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with more severe lung injury and worse outcome, sup-
porting the concept that lung injury is partly the result of 
a massive proinflammatory response.60-62

Cytokines and multiple organ dysfunction syndrome
In patients with ARDS the highest cytokine concentrations 
are found downstream from the lung.63 Thus biotrauma 
is not only confined to the lungs but may also result in a 
systemic inflammatory response syndrome (SIRS)52,61,62,64 
and distant organ apoptosis,20 both leading to MODS and 
death. This offers an explanation for the observation that 
most patients with ARDS do not die from respiratory 
failure but from MODS.5 The presumed causal rela-
tion between a ventilation-induced increase in systemic 
cytokine levels and subsequent MODS is an interesting 
hypothesis.37,61,62,65-69 Several studies have found plasma 
cytokine levels to be higher during large tidal volume 
ventilation.51,52,70,71 and associated with the development 
of MODS,72 and persistent cytokine elevation in turn is 
associated with a poor outcome in patients with ARDS.60,73

Another important mechanism contributing to the develop-
ment of MODS is the ventilation-induced enhancement 
of local dissemination of bacteria74 and decompartiment-
alisation of bacteria and endotoxins from the alveolar 
space into the circulation.75-77 Bacteria derived from BAL fluid 
from ARDS patients with persistent local inflammation 
exhibit enhanced growth capacity when incubated with 
proinflammatory cytokines.78 Kanangat et al. showed that 
the induction of cytokines by LPS diminished the bacterial 
killing capacity of monocytes.79 This supports the theory 
that a persistent local proinflammatory reaction may be a 
risk factor for developing a ventilator-associated pneumonia 

(VAP).80 In-vitro corticosteroids block these increased 
bacterial growth capacities in the presence of high pro-
inflammatory cytokine concentrations.81 If confirmed this 
may be an interesting new strategy in preventing VAP in 
certain selected patient groups. 
The role of immunomodulation on the clinical course of 
VILI and MODS needs further investigation. In neonatal 
RDS, early treatment with corticosteroids has significantly 
decreased the inflammatory response,82 diminished CLD 
and dramatically improved survival, the contribution of 
corticosteroids in (late) adult ARDS is still controversial.83

C O N C L U S I O N S

There is a growing body of evidence that mechanical 
ventilation may sensitise the innate immune system and 
that in turn the innate immune system may sensitise 
the lungs to the effects of mechanical ventilation. This 
explains the exaggerated ventilation-induced inflamma-
tory response in preinjured lungs and is of great clinical 
importance.84 Cytokines play an important role in the vari-
ous interrelated processes that lead to ventilator-induced 
lung injury and other related systemic complications, 
such as multiple organ dysfunction syndrome and possibly 
ventilator associated pneumonia. 

Table 4 Continued

Author, reference Study subject Study design Studied variables Results
Kwong105 Premature neonates, 

n=15
Mechanical ventilation IL-1, IL-8, IL-10 

in BAL
IL-10 undetectable

IL-10 inhibits IL-1, IL-8 
in BAL derived macro-
phages

Mc Colm106 Preterm neonates, 
n=17

Mechanical ventilation IL-1, IL-8, IL-10 
in BAL

IL-10 detectable in CLD, 
elevated IL-1, IL-8

Oei59 Neonates, n=48 Mechanical ventilation IL-10 in BAL IL-10 increases with GA

Low IL-10 in CLD

Schultz107 Neonates, n=20 RDS IL-10 in BAL Elevated pro-inflammatory 
cytokines, stable IL-10

Groneck55 Neonates, n=59 Follow-up infants with 
prolonged MV need

IL-8 in BAL Increased IL-8 levels

Hitti56 Neonates, n=136 A: RDS

B: no RDS
TNF- in BAL A > B

Jonsson57 Neonates, n=28 A: CLD

B: no CLD
IL-1, IL-6, IL-8 in 
BAL

A > B

Munshi58 Neonates, n=56 A: RDS progress to BPD

B: RDS resolving

IL-6, IL-8 in BAL A > B

N O V E M B E R  2 0 0 5 ,  V O L .  6 3 ,  N O .  1 0

388



N O V E M B E R  2 0 0 5 ,  V O L .  6 3 ,  N O .  1 0

A B B R E V I A T I O N S

P = PIP-PEEP difference
ALI = actual lung injury
ARDS = adult respiratory distress syndrome 
BAL = bronchoalveolar lavage 
BPD = bronchopulmonary dysplasia 
CLD = chronic lung disease
CPAP = continuous positive airway pressure
e.t. = endotracheal
FiO2 = fractional inspired oxygen
HSP = heat shock protein
ICAM = intercellular adhesion molecule
IL = interleukin 
i.v. = intravenous
LPS = lipopolysaccharide
MIP = macrophage inflammatory protein
MV = mechanical ventilation 
nd = not documented
NEEP = negative end-expiratory pressure (in cm H2O)
PaO2 = pulmonary artery oxygen
PEEP = positive end-expiratory pressure (in cm H2O)
PIP = peak inspiratory pressure (in cm H2O)
PMN = polymorphonuclear leucocytes
RA = receptor antagonist
RDS = respiratory distress syndrome
rIL = recombinant interleukin
RM = recruitment maneuver
SOL = soluble
TNF = tumour necrosis factor 
VEGF = vascular endothelial growth factor
Vt = tidal volume (in ml/kg)
WBC = white blood cells
ZEEP = zero end-expiratory pressure
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