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ABSTRA      C T

Acute myeloid leukaemia (AML) is a heterogeneous disease 
characterised by clonal malignant haematopoiesis with 
a differentiation arrest and excessive proliferation of 
leukaemic blasts. Over the past decades, the heterogeneity 
of AML has been illustrated by evolving classifications 
based on morphology (French-American-British 
classification (FAB classification), cytogenetic abnormalities 
(e.g. t(8;21), monosomies etc.), phenotype and/or molecular 
abnormalities (e.g. Fms-like tyrosine kinase 3 gene 
internal tandem duplication (FLT3-ITD), mutations in 
nucleophosmin 1 (NPM1) and the transcription factor 
CCAAT/enhancer binding protein a (CEBPA), etc.). 
The current World Health Organisation (WHO) 2008 
classification has integrated these classification modalities. 
Clinically, dissection of AML into various subtypes allows 
better survival prediction, but has still limited impact 
on treatment strategies, with the exception of all-trans 
retinoic acid treatment for AML-M3 and no allogeneic 
haematopoietic cell transplantation in complete remission 
(CR1) for patients with normal karyotype bearing an 
NPM1 mutation without FLT3-ITD. However, enhanced 
understanding of the molecular biology of AML will 
likely result in more ‘tailor-made’ therapies, for example 
by adding specific tyrosine kinase inhibitors to standard 
chemotherapy. 
In this review, we summarise the variables currently 
used to classify AML. Specifically, the contribution of 
microarrays in classification, prognosis and understanding 
of pathobiology of AML is discussed. 
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INTROD      U C TION  

A C U T E  M Y E L O I D  L E U K A E M I A

Acute myeloid leukaemia (AML) is defined as a clonal 
disorder caused by malignant transformation of a bone 
marrow-derived, self-renewing stem or progenitor cell, which 
demonstrates an enhanced proliferation as well as aberrant 
differentiation resulting in haematopoietic insufficiency 
(i.e. granulocytopenia, thrombocytopenia or anaemia).1,2 
The clinical signs and symptoms of AML are diverse and 
nonspecific, but they are usually directly caused by the 
leukaemic infiltration of the bone marrow, with resultant 
cytopenia.2 AML is considered to be a heterogeneous 
group of disorders with variable underlying abnormalities 
and clinical behaviour, including responses to treatment. 
Therefore, classification of the disease is important and 
several classification systems exist to subdivide AML. 

FAB classification
Historically, AMLs were divided into subtypes based on 
the type of cell from which the leukaemia developed and 
the level of maturation (i.e. French-American-British 
(FAB) classification).1-3 In addition, cytogenetic analysis 
of leukaemic blasts has resulted in the identification of 
non-random clonal chromosomal aberrations, of which 
some have been correlated to specific FAB subtypes (e.g. 
t(15;17) with AML-M3).

WHO classification
Nowadays, the World Health Organization (WHO) provides 
a classification system in which morphology, cytogenetics, 
molecular genetics, and immunological markers are 
incorporated and interrelated.4 Recently, for the first 
time, specific gene mutations (i.e. mutations in CEBPA 
and NPM1) have been included as ‘provisional entities’ in 
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the revised WHO 2008 classification for AML.5 There is 
growing evidence that these two gene mutations represent 
primary genetic lesions (so-called class II mutations) that 
impair haematopoietic differentiation.6 Mutations in the 
fms-related tyrosine kinase 3 (FLT3) gene (e.g. FLT3-ITD 
or FLT3 kinase domain mutations) are considered class 
I mutations conferring a proliferation and/or survival 
advantage. AML with FLT3 mutations is not considered a 
distinct entity, although determining the presence of such 
mutations is recommended because they have prognostic 
significance.7 

Prognostic factors
A number of clinical and biological features that reflect the 
heterogeneity of AML are used to predict the likelihood 
that a patient will have a response to treatment or relapse. 
Adverse prognostic factors in AML include increasing 
age, a poor performance before treatment, unfavourable 
cytogenetic abnormalities and a high white blood cell 
count.1,2,8-10 Furthermore, therapy-related AML or AML 
arising after a myelodysplastic or myeloproliferative 
syndrome is usually more resistant to standard treatment 
than de novo AML.11,12 

Cytogenetics
Important predictors of disease outcome are the 
pre-treatment cytogenetic and molecular findings in 
AML blasts.2,13-20 To date, in AML approximately 200 
different structural and numerical aberrations have been 
described.7,20 Cytogenetic findings permit patient risk to 
be categorised as favourable, intermediate or unfavourable, 
with very different cure rates.2,3,13-15,18,20-25 Although there 
may be (subtle) differences in the criteria used to define 
these risk groups among different study groups, the 
presence of for instance t(8;21)(q22;q22), t(15;17)(q22;q21) 
and inv16(p13q22)/t(16;16)(p13;q22) is generally classified 
as favourable-risk AML (with leucocytes <20 x 109). On 
the other end of the spectrum is the unfavourable-risk 
group, which includes blasts showing e.g. monosomies 
of chromosome 5 or 7, deletion of the long arm of 
chromosomes 3, 5 and 7 and complex karyotypes. Of note, 
the monosomal karyotype, defined as non-core-binding 
factor (CBF) leukaemias with a karyotype with at least 
two autosomal monosomies or one single autosomal 
monosomy in the presence of one or more structural 
cytogenetic abnormalities, is considered to be a better 
predictor of (very) poor outcome than the traditionally 
defined complex karyotype.26 The intermediate-risk group 
includes AMLs with a normal karyotype and AMLs which 
are not classified in the other two risk groups. 

Molecular genetics
In recent years, the discovery of mutations in e.g. genes 
encoding FLT3, NPM1 and CEBPA has shown to be of major 

importance (table 1). Nowadays, it is increasingly possible 
to distinguish subsets of patients with differing outcomes 
from the large cohort with a normal karyotype AML 
or miscellaneous cytogenetic abnormalities considered 
as intermediate-risk cytogenetics. The majority of FLT3 
receptor tyrosine kinase gene mutations are internal 
tandem duplications (ITD); less frequent are mutations 
involving the tyrosine kinase domain (TKD). Several 
groups have consistently reported that FLT3-ITD is a major 
independent adverse risk factor in AML.27-31 The prognostic 
relevance of FLT3-TKD mutations, however, remains 
controversial.7 FLT3-ITD has a prevalence of 20 to 25% in 
young adults and nearly 35% in the older adult population. 
The ratio of the FLT3-ITD and the wild-type FLT3 (measured 
by polymerase chain reaction, PCR) varies from patient to 
patient, and this difference may have clinical implications. 
Thiede et al. found that patients with an allelic ratio (AR) 
above the median (0.78) had significantly shorter overall 
and disease-free survival, whereas survival in patients 
with ratios below 0.78 did not differ from those without 
FLT3 aberrations.27 CEBPA, a transcription factor involved 
in normal myelopoiesis, is mutated in ~10% of AML cases 
and predicts a relatively favourable outcome in paediatric 

Table 1. Recurrent molecular abnormalities in adult 
AML

Gene mutation Percentage 
of cases

Prognostic 
significance

Reference*

Fms-related tyrosine 
kinase 3 (FLT3), 
internal tandem dupli-
cation (ITD)

20-35 Unfavourable 27-31

CCAAT/enhancer 
binding protein alpha 
(CEBPA)

5-10 Favourable, 
when 
mutated on 
both alleles

32-37

Nucleophosmin 
(NPM1)

25-35 Favourable 
in absence of 
FLT3-ITD

34,35,38,39

Wilms tumour 1 (WT1) 10-13 Unfavourable? 40-42

RAS ~15 - 34

Cytosolic isocitrate 
dehydrogenase 1/2 
(IDH1, IDH2)

10-25 In subsets 
unfavourable?

47-50

Tet oncogene family 
member 2 (TET2)

12-20 Unfavourable? 51-53

KIT 2-8 Unfavourable? 54-58

DNA (cytosine-5-)-
methyltransferase 3 
alpha (DNMT3A)

22 Unfavourable? 59

Protein tyrosine phos-
phatase, non-receptor 
type 11 (PTPN11)

<5 - 60

Runt related transcrip-
tion factor 1 (RUNX1)

<5 - 60

*Due to space limitations, only a selected number are given for each 
abnormality.
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and adult AML, however, only when CEBPA is mutated 
on both alleles.32-37 Approximately 50% of adult normal 
karyotype AMLs harbour an NPM1 mutation, which leads to 
delocalisation of the NPM1 protein to the cytoplasm.38 NPM1 
and FLT3-ITD commonly co-exist in normal karyotype 
AML suggesting that they may cooperate in generating 
the leukaemic phenotype. The presence of an NPM1 
mutation (in the absence of an FLT3-ITD mutation) is 
associated with better outcome in terms of higher complete 
response rates and increased long-term survival compared 
with patients lacking the mutation.34,35,39 Consequently, 
it has been suggested that cytogenetically normal AML 
involving the genotype of mutant NPM1 without FLT3-ITD 
should no longer be classified as intermediate-risk 
leukaemia but rather should be classified as favourable-risk 
leukaemia.35 Furthermore, patients with mutant NPM1 
without FLT3-ITD may not benefit from related-donor 
transplantation as first-line treatment.35 Mutations in the 
Wilms’ tumour gene (WT1), present in ~10% of patients 
with normal karyotype AML, have been found to be 
associated with poor outcome, especially in combination 
with an FLT3-ITD.40-43 RAS mutations, occurring in ~15% of 
cases, are suggested to be prognostically neutral.34 
Recently, mutations in genes involved in metabolism 
have been discovered.44,45 In AML, but also in low-grade 
gliomas and secondary glioblastoma multiforme (GBM), 
mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) 
and its mitochondrial homolog IDH2 have been identified. 
Both IDH1 and IDH2 are important enzymes in the citrate 
cycle (Krebs cycle). Two distinct alterations are caused by 
the tumour-derived mutations in IDH1 or IDH2: loss of its 
normal catalytic activity in the production of α-ketoglutarate 
(α-KG) and gain of the catalytic activity to produce 
2-hydroxygulatrate (2-HG). Consequently, less α-ketoglutarate 
is available for biological processes in which it functions as 
a co-factor. Remarkably, IDH1/2 mutations, occurring in 

~10 to 25% of AML cases,47-50 were mutually exclusive with 
mutations in gene encoding the a-ketoglutarate-dependent 
enzyme tet oncogene family member 2 (TET2) (occurring 
in 12 to 20% of AML cases).51-53 Loss-of-function mutations 
in TET2 were associated with similar epigenetic defects as 
IDH1/2 mutants. Interestingly, a shared proleukaemogenic 
effect between TET2 mutations and mutations in IDH1 and 
IDH2 was suggested since α-ketoglutarate is a co-factor for 
TET2 in the hydroxylation of 5-methylcytosine and thus effects 
the methylation process.46 

In cytogenetically favourable core binding factor (CBF AML 
(i.e. AML with t(8;21) or inv(16)/t(16;16)), the presence of 
a mutation in the KIT receptor tyrosine kinase has been 
shown to have an unfavourable influence on outcome 
in retrospective studies.54-58 Recently, highly recurrent 
mutations in the DNA methyltransferase gene DNMT3A 
have been discovered and were found to be independently 
associated with poor outcome in AML.59 Other mutations 

as those involving protein tyrosine phosphatase, 
non-receptor type 11 (PTPN11) and runt-related 
transcription factor 1 (RUNX1) are relatively rare (i.e. <5% 
of cases), making their relevance to risk-stratified treatment 
approaches uncertain at the present time.60

Effect of over-expressed genes on outcome
Quantitative expression levels of several genes (e.g. Brain 
And Acute Leukaemia Cytoplasmic gene BAALC),61-63 
Ets-related gene (ERG),64,65 Meningioma-1 gene (MN1),66,67 
and Ecotropic Viral Integration-1 gene (EVI1)68-70 have 
been shown to carry prognostic information in patients 
with (normal karyotype) AML (table 2). Except for EVI1, 
the molecular basis of up-regulation of these genes 
remains, however, poorly understood. Recently, it was 
shown that expression levels of ERG, BAALC and 
MN1 are strongly correlated, which suggests that their 
prognostic significance may be overlapping.64 Several 
studies have evaluated the prognostic significance of 
expression of multidrug resistance (MDR) genes with 
varying conclusions.71-74 Expression of factors that may 
relate to interaction of leukaemic cells with bone marrow 
microenvironment (e.g. vascular endothelial growth factor 
A (VEGFA), and chemokine (C-X-C motif) receptor 4 
(CXCR4)) as well as VEGFC have also been found to impact 
on outcome.75-79 Finally, high expression of p16INK4A was 
found as a prognostic parameter for overall survival in 
older patients with AML.80

Table 2. Effect of quantitative expression levels of genes on 

outcome

Gene overexpression Percentage 
of cases*

Prognostic 
significance

Reference*

Brain and acute 
leukaemia cytoplasmic 
gene (BAALC)

~50 Unfavourable 61-63

Ets-related gene (ERG) ~25 Unfavourable 64,65

Meningioma-1 gene 
(MN1)

~25-50 Unfavourable 66,67

Ecotropic viral integra-
tion-1 gene (EVI1)

6-11 Unfavourable 68-70

Chemokine (C-X-C 
motif) receptor 4 
(CXCR4)

~33 - 77,78

Vascular endothe-
lial growth factor C 
(VEGFC)

~50 Unfavourable 79

Cyclin-dependent 
kinase inhibitor 2A 
(CDKN2A, p16INK4A)

~75 Unfavourable 80

Due to space limitations, only a selected number are given for each 
abnormality. * in case of overexpression, the percentage is based on the 
cut-off used in the referenced papers. This may involve simple dichot-
omisation (e.g. BAALC), resulting in 50% of the cases by definition 
exhibiting overexpression. Of note, also continuous expression levels 
of VEGFC correlated with poor outcome.
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G E N E  E X P R E S S I O N  P R O F I L I N G

Although an increasing number of prognostically relevant 
(cyto) genetic variables have been identified in AML, 
not all cases are currently classified adequately. To date, 
tremendous evidence exists that DNA microarray-based 
gene expression profiling adds an important new facet 
to the study of AML, e.g. in relation to classification 
opportunities. In the past decade, microarrays, together 
with the availability of the complete nucleotide sequence 
of the human genome, have made it possible to measure 
expression levels of thousands of different mRNA 
transcripts simultaneously.81-84 There are several (potential) 
applications for gene expression profiling (GEP) studies. 
GEP studies are well suited to reveal characteristic patterns 
(signatures) of activation or silencing or both of multiple 
genes that may reflect underlying biology of disease 
subtypes. Subsequently, this may provide diagnostic/
prognostic information, and potentially reveal novel 
molecular targets for therapeutic intervention.

Prediction of known classes: ‘class prediction’
In an early landmark study in 1999, researchers described 
for the first time the power of GEP in leukaemias.85 In that 
particular study, GEP profiles were used to distinguish AML 
samples from those with acute lymphoblastic leukaemia 
in an unsupervised approach. Of note, the grouping of 
cases according to similar gene expression profiles is 
known as clustering.86,87 Clustering in an unsupervised 
approach is done in an unbiased way, i.e. without the use of 
external information such as patient baseline characteristics, 
mutations or cytogenetics. Class prediction refers to the 
possibility to predict leukaemia subtypes, as defined by 
their phenotypes and genotypes, with the use of GEP 
signatures. For instance, it was demonstrated that the 
prognostically favourable AML subtypes (i.e. t(8;21), t(15;17) 
and inv(16)) have distinctive GEP profiles which have 
consistently been found to be predictable with almost 
100% accuracy using GEP.85,88-96 Interestingly, paediatric 
AML GEP profiles could also be used to predict adult 
AML samples with identical cytogenetic abnormalities.90 
In addition, GEP profiles have a high accuracy to predict 
subgroups with rare translocations, as shown for the t(8;16)
(p11;p13) with CBP and MOZ (monocytic leukemia zinc 
finger protein) re-arrangements.97,98 Moreover, unsupervised 
clustering revealed that mutations in CEBPA and also NPM1 
correlated with gene expression signatures.92,99 However, the 
accuracy of prediction for other cytogenetic AML subsets, 
such as those with abnormalities involving band 11q23, 
abnormalities involving 3q, -5/5q-, -7/7q- or t(9;22) was 
lower.88,89,93 Similarly, the prediction accuracy for specific 
molecular subsets of patients such as those harbouring 
FLT3-ITD, FLT3-TKD and mutations in KRAS and NRAS 
genes was lower.93,100

Prediction of new AML subgroups: ‘class discovery’ 
GEP studies also have the potential to uncover new 
subgroups in AML.88,92,101 This procedure is representative 
of class discovery. For example, Valk and colleagues 
identified 16 subgroups in 285 AMLs, several of which 
lacked previously known denominators.92 In addition, 
at least five other GEP studies revealed previously 
unrecognised heterogeneity within established paediatric 
as well as adult AML subtypes.88,90,102,103 Recently, it was 
demonstrated that a subset of AML patients who did not 
harbour CEBPA mutations could be characterised by a 
GEP signature resembling that of AML patients with 
CEBPA mutations.104 Interestingly, further experiments 
revealed that in these cases, CEBPA was epigenetically 
silenced, which indicates that the detection of a distinct 
gene expression subtype had indeed led to the discovery of 
a biologically meaningful subgroup.
From a clinical point of view, one of the most important 
challenges in AML is to enlarge insight into the 
pathobiology of AML in the elderly. In recent decades, 
survival of paediatric and adult AML patients has improved 
significantly, while survival of older AML patients (>60 
years) has remained virtually unchanged over the 
past decades resulting from the combination of poor 
chemotherapeutic tolerance and inherent chemotherapy 
resistance compared with younger AML patients.1,2,15 
Moreover, AML in older patients shows a lower frequency 
of favourable core-binding chromosomal abnormalities 
and a higher incidence of complex aberrant karyotypes. 
Recently, two studies showed that older patients with 
AML show distinct GEP signatures compared with 
younger patients with AML.80,105 The latter study described 
that, unlike healthy cells, AML-derived blasts show a 
down-regulation of p16INK4A mRNA with increasing 
age. Based on this observation it was hypothesised that 
suppression of defence mechanisms which protect older 
cells against cellular and DNA damage might facilitate 
oncogenesis in older individuals.80,106 
So, GEP could help researchers to discover hidden 
heterogeneity within AML subtypes.

GEP and predicting outcome in AML
GEP has also been applied to derive prognostic signatures 
for AML that would identify subsets of patients with 
differing outcomes. In these studies treatment outcome or 
resistance were used to define a prognostic predictor.107,108 
Hierarchical clustering analysis in 93 patients with 
core-binding factor AML revealed the stratification of 
two clusters with significantly different survival.102 In 
cytogenetically normal AML, Bullinger et al. were able to 
divide cytogenetically normal samples into two diverse 
prognostically relevant clusters using GEP.88 Importantly, 
the prognostic impact of this signature was independently 
validated in another cohort of AML samples using a 
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different platform and a longer follow-up.109 Of note, the 
prognostic effect of the signature was in part related to the 
occurrence of FLT3-ITD mutations, only 81 of 133 probes 
could be validated due to differences in platforms and the 
prediction accuracy of the classifier was overall modest, 
with approximately 60% of the patients having their 
outcome predicted correctly.109,110 Recently, another study 
in cytogenetically normal karyotype AMLs revealed a gene 
signature of 86-probe sets correlating significantly with 
overall survival.111 The prognostic effect of this classifier 
was independent of age, FLT3-ITD and NPM1 mutation 
status. In paediatric AML, a GEP study in 54 AML patients 
revealed 36 probe sets to be associated with prognosis.112 

However, in an independent paediatric AML GEP study 
this prognostic signature could not be confirmed.90 

Remarks and limitations
Gene expression analysis can be performed on 
microarray platforms with varying kinds of probes 
(cDNA, short-oligonucleotide, long-oligonucleotide, etc.), 
production and labelling method (microbeads, spotting, 
in situ polymerisation, etc.). Specificity is highest for 
DNA-oligonucleotide microarrays of 40-60-mer probe 
length as they have a lower risk of cross-hybridisation.113 
The widely-used Affymetrix microarrays rely on 25-mer 
in situ synthesised probes.114 The interpretation of the 
fluorescence intensity signals requires sophisticated 
computational methods for data normalisation and 
classification,115 because each study generates large 
datasets. GEP is a multistep procedure that can only 
be briefly outlined here. Initially, data pre-processing 
and quality control steps are performed for detection of 
array artefacts and the evaluation of the homogeneity 
of experimental groups. Furthermore, it is important 
to be aware of interstudy variations with regard to data 
normalisation, gene filtering and clustering procedures, 
which could influence the outcome of the analysis.84,116 
Notably, significant efforts have led to the establishment 
of proposed guidelines to describe the minimum 
information about a microarray experiment (MIAME) that 
is needed to enable the interpretation of the results of the 
experiment unambiguously and potentially to reproduce 
the experiment. This is particularly important information 
if microarray data are deposited in a public database, such 
as the Gene Expression Omnibus.117,118 

GEP holds promise for developing molecular portraits 
of cancer subtypes with different clinical outcomes that 
could not be sub-classified or identified upon (initial) 
clinical presentation. One of the possible challenges in 
GEP studies is the (low) number of samples as compared 
with the number of genes tested, the so-called ‘curse of 
dimensionality’ (i.e. overfitting).119 In addition, there may 
be small numbers of genes whose expression discriminate 
cancer subtypes but they may not be driving causes of 

cancer initiation/ progression and therefore provide little 
survival information. Another not surprising issue is 
that independent studies can identify different panels 
of genes with similar discriminatory specificity and 
power. Furthermore, the number of genes expected to 
be differentially expressed between two (or more) classes 
of interest within a single cancer subtype is probably 
small, and the differences in expression may not be 
large (enough) in relation to experimental noise.120 We 
have introduced the concept of TSR profiling that might 
improve the performance of predictive profiles.121 These 
transcriptional system regulators (TSRs) allowed one 
to characterise the expression profile of an individual 
microarray with just 50 TSR scores instead of using ten 
thousands of individual genes: i.e. a >500-fold reduction 
of complexity, thus avoiding the problem of overfitting. 
There is a second advantage of TSR profiling: i.e. when 
signals of multiple genes are added to calculate TSR scores 
the signal-to-noise ratio improves because noise cancels 
out. Further studies are needed to investigate whether 
TSR scores may be more reproducible input variables for 
prediction models than expression signals of selected 
individual genes. 

Biology versus statistics
A pending question in GEP studies is whether large-fold 
changes in individual genes have more biological relevance 
than smaller but coordinated fold-changes in a set of 
genes (particularly along a single biological pathway). 
The assumption that (only) changes of more than twofold 
are significant is still surprisingly widespread.122 This 
threshold is based on initial publications by the Stanford 
group who found, from concordance analyses, that a more 
than twofold variation was significant for a particular set 
of experiments.123 This factor of two was subsequently 
referred to by others as a universal significance threshold, 
without realising its development. Moreover, in principle, 
the particular changes in gene expression between classes 
of samples may be less informative than the pathways they 
impact. Finally, it is important to realise that relative levels 
of mRNA expression do not necessarily reflect biological 
activity, as the latter may be highly dependent on other 
factors, such as posttranslational modifications. 

Clinical application
Following the introduction of GEP in leukaemia research 
a decade ago by Golub and colleagues, various study 
groups worldwide have consistently shown that GEP 
can be used to predict molecularly defined subtypes of 
AML.124-128 However, from a clinical point of view, several 
questions surround GEP in AML: e.g. can GEP improve 
current diagnostics and risk classification schemes in 
AML, or the ability to predict outcome in AML patients 
beyond that currently provided by well-established 
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prognostic variables such as age, presenting white blood 
cell count and the presence of cytogenetic or molecular 
(e.g. mutations) abnormalities? To be able to answer such 
questions properly at least two important prerequisites 
should be met. Firstly, appropriate validation of GEP 
results in independent (prospective) study cohorts is 
needed. Secondly, for successful subgroup discovery it 
is crucial to have access to sufficiently large series of 
cases representing the various subtypes of AML. It may 
be unlikely that gene expression arrays will be used to 
diagnose cytogenetic and molecular abnormalities in the 
clinical setting when direct diagnostic assays are available 
and are more cost-effective.129 However, it is important to 
realise that the particular value of GEP-based classification 
lies in its comprehensiveness (i.e. the ability to measure 
tens of thousands of transcripts at one time) and its 
possibility to uncover (hidden) heterogeneity (e.g. related 
to differing outcome) within established cytogenetic 
and/or molecular subtypes of AML. However, the latter 
is highly dependent on the availability of high-quality 
samples and robustly annotated clinical data, which often 
have to be collected over many years. Ultimately, once 
intensively (prospectively) validated and standardised, 
measuring a panel of selected genes in combination with 
clinical (e.g. age, WBC count) and established variables 
(e.g. cytogenetics, and mutations) might be of importance 
in guiding doctors (therapeutic) decisions. Finally, from a 
cell biological point of view, particular efforts should be 
directed towards proper understanding of the biological 
mechanism and regulation of ‘genes with prognostic 
significance’. This aspect will clearly need to be further 
studied, also in terms of targeted therapy development 
and testing.

Which cells to profile?
There is not only heterogeneity among AML patients, 
heterogeneity is also evident within the AML cells of one 
patient. AML is thought to be initiated and maintained 
by a few leukaemia-initiating cells (LICs) that have an 
enhanced self-renewal capacity, can engraft in nonobese 
diabetic/severe combined immunodeficient mice and 
are, nowadays, believed to be restricted to the CD34+/
CD38- or CD34+/CD38+ fraction.130-134 However, there 
is evidence from mouse studies that mixed lineage 
leukaemia-associated human leukaemias can also 
arise from more progenitor cells.135,136 Furthermore, a 
recent study suggested that for some NPM1 mutated 
AMLs the LICs are also present in the CD34- fraction.137 

Most AML GEP studies, however, have been performed 
with the total AML mononuclear cell (MNC) fraction. 
Because cell lineage and differentiation stages might 
(theoretically) affect gene-expression based clustering, 
the differential expression of genes associated with the 
differentiation stage might obscure more basic gene 

expression information related to tumour initiation and 
maintenance. Consequently, profiling of more purified 
cell populations, instead of total MNC fractions, might 
enhance the possibilities of GEP in identifying novel 
prognostic markers or subgroup discovery.138 However, 
this approach directly depends on the accepted definition 
of immunophenotypic markers of leukaemia-initiating 
cells. Finally, there is compelling emerging evidence that 
cell nonautonomous contributions to leukaemia play a 
pivotal role in disease maintenance and propagation (i.e. 
the microenvironment, the niche).75 

C o n c l u s i o n s  a n d  f u t u r e 
p e r s p e c t i v e s

Gene expression profiling using microarrays is currently 
the standard for analysing the transcriptome. However, 
profiling of e.g. microRNA (miRNA) levels, chromosomal 
copy number changes and epigenetic modifications 
have also played a pivotal role in enhanced molecular 
understanding of the (patho)biology of cancer, including 
AML. For example, similarly to mRNA profiling, miRNA 
profiling has revealed that specific subgroups of AML 
share distinctive miRNA signatures with prognostic 
significance.139-142 Furthermore, methylation profiling of 
a large series of AML patients identified several clusters, 
of which some could not be explained by the enrichment 
of any currently known recurrent cytogenetic, molecular, 
or clinical features.143 In recent times, next-generation 
sequencing (NGS) technologies have become available 
that enable gene expression analysis by direct shotgun 
sequencing of complementary DNA synthesised from RNA 
samples.144-147 NGS technologies have an impressive range 
of applications, and are increasingly being developed. 
In contrast to microarrays, sequencing technologies 
do not depend on predefined sequences, thus allowing 
for detection of, for example, new splicing variants 
or single-nucleotide polymorphisms. Furthermore, it 
allows genome-wide profiling of epigenetic marks.148 It is 
hypothesised that in the near future, NGS technologies 
could be used to obtain high-quality sequence data 
from a genome isolated from a single cell, which would 
be a substantial breakthrough, particularly for cancer 
genomics.149 Once we know the genomic landscape 
of cancer more adequately, what should follow? While 
genome-wide characterisation of cancer subtypes will 
likely reveal significant clues about genes that play a 
role in cancer progression, it is important to follow-up 
on these clues by carrying out functional screens of 
altered genes. Functional screening would aim to identify 
those (somatic) alterations that are imperative in tumour 
initiation and progression. Furthermore, functionally 
relevant mutations must be distinguished from passenger 
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mutations (i.e. unimportant genetic changes caused by 
genomic instability of cancer cells). Finally, functional 
screening may establish candidate genes and their protein 
products for targeted therapy development or testing, as 
well as for diagnostic/prognostic assay development. 
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