Guilty as charged: unmeasured urinary anions in a case of pyroglutamic acidosis

E.J. Rolleman, E.J. Hoorn, P. Didden, R. Zietse

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands, *corresponding author: tel.: +31 (0)10-703 29 69, e-mail: r.zietse@erasmusmc.nl

Abstract

A patient developed an unexplained metabolic acidosis with the characteristics of renal tubular acidosis. By correcting the serum anion gap for hypoalbuminaemia and analysing the urinary anions and cations, the presence of unmeasured anions was revealed. The diagnosis of pyroglutamic acidosis, caused by a combination of flucloxacillin and acetaminophen, was established. Strategies for solving complex cases of metabolic acidosis are discussed.

Keywords

Anion gap, flucloxacillin, hypernatraemia, hypokalaemia, metabolic acidosis, urine osmolal gap

Case Report

A 72-year-old woman (body weight 58 kg, height 170 cm) presented to the emergency room with back pain, fever and confusion. She had a previous history of lung emphysema, hepatitis A and B, breast cancer (treated with surgery and radiotherapy), and, more recently, a vertebral laminectomy for lumbar spinal canal stenosis. Her only medication consisted of bronchodilators and analgesics, including acetaminophen, non-steroidal anti-inflammatory drugs and morphine. At presentation, both vital signs (blood pressure 130/63 mmHg, pulse 94 beats/min and temperature 37.0°C) and physical examination were unremarkable. However, she had an infection (C-reactive protein 276 mg/l, leucocytes 19.3 x 10³/l) and was admitted for further analysis. Magnetic resonance imaging showed an epidural abscess, and subsequent computed tomography revealed bilateral abscesses in the psoas muscles. *Staphylococcus aureus* was isolated from blood cultures and from one of the psoas abscesses. Treatment with long-term and high-dose (two grams six times daily) intravenous flucloxacillin was commenced. Her only additional medication was acetaminophen (one gram four times daily). During her recovery, she became somnolent on the 43rd day of admission. Her laboratory results now showed a metabolic acidosis, hypokalaemia, and hypernatraemia (table 1). The following parameters were also measured: γ-glutamyltransferase 45 U/l, alkaline phosphatase 139 U/l, serum phosphate 0.80 mmol/l, serum uric acid 0.20 mmol/l; urine was negative for ketones, glucose and protein. Initially, renal tubular acidosis was suspected. However, two days later, this diagnosis was revised, after a high serum anion gap became apparent and after an analysis of measured and unmeasured urinary anions and cations was performed, revealing a considerable

Table 1. Measurements and calculations in serum and urine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Serum</th>
<th>Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-reactive protein, mg/l</td>
<td>74</td>
<td>63</td>
</tr>
<tr>
<td>Leucocytes, 10³/l</td>
<td>16.5</td>
<td>18.1</td>
</tr>
<tr>
<td>Creatinine, mmol/l</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>mmol/l</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Urea, mmol/l</td>
<td>4.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Osmolality, mOsm/kg</td>
<td>308</td>
<td>-</td>
</tr>
<tr>
<td>Na⁺, mmol/l</td>
<td>150</td>
<td>151</td>
</tr>
<tr>
<td>K⁺, mmol/l</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>CI⁻, mmol/l</td>
<td>120</td>
<td>123</td>
</tr>
<tr>
<td>pH</td>
<td>7.36</td>
<td>7.33</td>
</tr>
<tr>
<td>pCO₂, kPa (mmHg)</td>
<td>3.2 (35)</td>
<td>2.5 (19)</td>
</tr>
<tr>
<td>HCO₃⁻, mmol/l</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Albumin, g/l</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Lactate, mmol/l</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Anion gap, mEq/l</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Corrected anion gap, mEq/l</td>
<td>+58</td>
<td>+75</td>
</tr>
</tbody>
</table>

Reference range for the serum anion gap in our centre is 8 to 16 mEq/l.
concentration of unmeasured urine anions \((202-108 = 94 \text{ mEq/l, figure 1})\). Pyroglutamic acid was suspected to be this unmeasured anion, because several risk factors (flucloxacillin, acetaminophen, ongoing infection, female gender) for pyroglutamic acidosis were present. Indeed, urine pyroglutamic acid was elevated \((90.9 \text{ mmol/mmol creatinine, reference <0.1 mmol/mmol creatinine, absolute concentration 201.6 mmol/l})\). The serum acetaminophen concentration was not very high \((2 \mu\text{g/ml})\). She was transferred to the intensive care unit, where all medication was discontinued and where she was treated with sodium bicarbonate. After her acid-base and electrolyte disorders had been corrected, she recovered without sequelae and was discharged to a nursing home for further recovery.

Table 2. Teaching points

- Pyroglutamic acidosis is a cause of high anion gap metabolic acidosis
- Pyroglutamic acid can be ‘overproduced’ in the setting of glutathione depletion (acetaminophen, sepsis, liver dysfunction, malnutrition) or ‘undersecreted’ due to inhibition of its enzyme (flucloxacillin, vigabatrin)
- When hypoalbuminaemia is present, the serum anion gap should be adjusted downward \((2.5 \text{ mEq decrease in anion gap for each } 10 \text{ g/l decrease in albuminaemia})\)
- The urine anion and osmolar gaps can be used to assess urinary ammonium excretion:
 - Urine anion gap: urine \(\text{Na}^+ + \text{K}^+ - \text{Cl}^-\)
 - Urine osmolar gap: measured minus calculated \((2\times [\text{Na}^+ + \text{K}^+] + \text{urea} + \text{glucose})\) urine osmolality
 - Estimated urinary \(\text{NH}_4^+\) excretion: \((\text{urine osmolar gap})/2\)
- The urine anion gap cannot differentiate between renal tubular acidosis and metabolic acidosis due to an unmeasured anion
- Analysis of urine cations and anions can be useful to detect the presence of unmeasured anions when the serum anion gap is inconclusive

First, the serum anion gap must be adjusted downward in patients with hypoalbuminaemia, because the negative charges on the serum proteins primarily determine the serum anion gap. Nevertheless, even the adjusted serum anion gap may be difficult to interpret, because its expected normal values range so widely \((~8 \text{ to } 16 \text{ mEq/l when not including } \text{K}^+)\) and also depend on the measurement characteristics of the laboratory.

Second, in cases in which the serum anion gap is ‘borderline’ and the cause of the acidosis is not obvious from the clinical context, the analysis of the urinary composition may be useful. Traditionally, three urinary tests have been utilised to differentiate metabolic acidosis, including the urine pH, the urine anion gap and the urine osmolar gap. Although the urine pH is expected to be high (generally >5.5) in renal tubular acidosis (due to urine bicarbonate loss or impaired ammoniogenesis), this test is limited by the use of semiquantitative dipsticks, dietary factors, and presence of urinary pathogens.

Both the urine anion and osmolar gaps provide an estimate of urinary ammonium excretion. The urinary ammonium excretion can be used to assess whether the kidneys are attempting to ‘rid the acid’ (high urinary ammonium excretion) or if the problem resides within the kidneys (failure to excrete ammonium), as for example in distal renal tubular acidosis.

DISCUSSION

Pyroglutamic acidosis is increasingly being recognised as an important cause of high anion gap metabolic acidosis. Because Kortmann et al. have already covered the pathophysiology of pyroglutamic acidosis in this issue of the Journal, our objective in this discussion is to focus on the diagnostic challenges associated with metabolic acidosis due to an unmeasured anion.

Initially, we diagnosed our case as renal tubular acidosis, because of the apparent hyperchloaraemic non-anion gap metabolic acidosis, high urine pH, positive urine anion gap, presence of hypokalaemia, and the absence of common disorders causing high-anion gap acidosis. However, a critical reappraisal, which consisted of appropriately adjusting the serum anion gap for hypoalbuminaemia and an analysis of urinary cations and anions (figure 1), suggested unmeasured anions. This reappraisal generated several teaching points (summarised in table 2).
The urine anion gap is an indirect measure of urine ammonium excretion, because ammonium is usually excreted as ammonium chloride. However, the urine anion gap cannot differentiate between renal tubular acidosis and metabolic acidosis due to unmeasured anions. In both of these settings the urine chloride concentration will be relatively low and therefore the anion gap positive, but for different reasons. In renal tubular acidosis, ammonium excretion is impaired and therefore little ammonium chloride is excreted. In metabolic acidosis due to an unmeasured anion, the kidneys will respond appropriately to the acidosis by increasing urinary ammonium excretion, but ammonium will be excreted with the unmeasured anions instead of with chloride.

The urine osmolal gap is a direct and semiquantitative index of the urinary ammonium concentration, because it estimates the concentration of this unmeasured cation (figure 1, table 2). The estimated urinary ammonium excretion in this patient was 19 mEq/l, which is approximately the cut-off value between an appropriate and an inappropriate renal response to metabolic acidosis. Although one would expect this value to be higher, the recent onset and relatively mild degree of metabolic acidosis likely produced the modest urine osmolal gap.

Finally, we propose the following explanations for the hypokalaemia and hypernatraemia. Hypokalaemia could have been caused by a non-reabsorbable anion, which can stimulate potassium secretion in the renal collecting duct. Both pyroglutamic acid and flucloxacillin can act as non-reabsorbable anions, and flucloxacillin may therefore also have contributed to the unmeasured urinary anions (figure 1). Hypernatraemia may have been caused by a positive sodium balance (large sodium content administered with flucloxacillin) and/or a solute diuresis combined with reduced water intake.

CONCLUSION

We have presented yet another case of pyroglutamic acidosis to illustrate the importance of having an index of suspicion for this diagnosis in unexplained cases of a high anion gap metabolic acidosis, especially because discontinuation of the offending factors can easily reverse this condition. Moreover, this case was presented to illustrate the utility of analysing unmeasured urinary anions to assist in the diagnosis of challenging cases of metabolic acidosis.

REFERENCES